《小数的意义》教案集锦7篇
作为一名为他人授业解惑的教育工作者,就难以避免地要准备教案,教案是保证教学取得成功、提高教学质量的基本条件。那么优秀的教案是什么样的呢?下面是小编为大家整理的《小数的意义》教案7篇,仅供参考,希望能够帮助到大家。
《小数的意义》教案 篇1教学目标:
1.进一步理解小数的含义。
2.学生认识单名数和复名数,在明确各种计量单位和单位间进率的基础上,会进行简单的名数改写。
3.通过收集生活中的小数,体验生活中处处有数学。
教学重点:
使学生掌握单名数与复名数改写的方法,熟练的进行单名数与复名数改写。
教学难点:
熟练的进行时间单位单名数与复名数的改写。
教学过程:
一、引入新课
复习引入:
1千米=( )米 1千克=( )克
1米=( )厘米 1吨=( )千克
1时=( )分 1分= ( )秒
1平方米= ( )平方分米
1平方分米=( )平方厘米
在课前大家都收集了一些资料,把你收集到的生活中的小数说给小组同学听。
找一组同学汇报他们收集的数据。
二、新课学习
1.名数
老师也收集了一些生活中的小数,我们一起来看一看:课件出示。
糖果的质量是0.5千克,小明的身高是1.35米,小红体操得分是9.25分,小丽的体温是38.5度。
这些小数分别表示什么意思呢?你能说说自己收集的小数的含义吗?
在计量长度、面积、重量、时间时,得到的数都带有单位名称,如1米30厘米,125厘米,32千克,30.4千克等.通常把量得的数和单位名称合起来叫做名数。
观察同学们说出的这些名数,有什么相同点和不同点?
相同点:都是测量的结果,有数有单位;
不同点:有的名数只带有一个单位名称,有的名数带有两个或两个以上的单位名称。
带有一个单位名称的名数,叫做单名数;带有两个或两个以上单位名称的叫做复名数。
大家能举出一些单名数和复名数的例子吗?
3分钟、7千米、6时15分、78平方米、4吨50千克、5米6分米、20平方厘米、9年、5千米60米。
2.例1
(1)80厘米= 米
引导学生观察:从这道算式中你发现了什么?
低级单位的名数能否转化为高级单位的名数呢?
应该怎样改写?学生汇报:说一说是怎样想的?
教师说明:因为100厘米=1米,80厘米=
米=0.80米,还可以这么算,80厘米=80100米=0.80米,其中的80100可以利用小数点移动的规律进行计算,缩小100倍也就是小数点向左移动2位,所以80100=0.80。
说一说你更喜欢哪种方法?
讨论:比较转化前后,什么变了,什么没变?
单位名称变了,数的大小变了,实际的多少没变。
让学生举出几个由低级单位转化为高级单位的例子。
归纳方法:用低级单位的数除以进率,商就是高级单位的数,余数就是低级单位的数。
练一练
(2)教师出示1米45厘米=( )米
这道题与上面的题相比有什么不同?(是复名数改写成单名数)
引导学生讨论交流:怎样将复名数改写成单名数?你是怎样想的?
首先把1米45厘米写成1. 米,因为1米等于1米,所以1米再加45厘米就等于1.45米。还可以这么想,1米45厘米是145厘米,145100=1.45米。
练一练:
4千米180米=( )千米 7米6厘米=( )米
3.例2
0.95米=( )厘米
可以怎样想?由高级单位名称改定成低级单位名称时,要用高级单位的数乘以进率,再加上低级单位的数.
想一想:1.32米=( )厘米
可以这么想:1.32米=1米+0.32米=100厘米+32厘米=132厘米,还可以这么算:1.32米=1.32100厘米=132厘米。
三、巩固练习
1.直接写出得数。
0.4510= 1.6100= 0.0561000= 40.5100=
7.81000= 0.710= 3.0610= 3.0610=
2.小刚检查调查表时发现了许多错误,你能帮忙把错误改正过来吗?
张佳佳:
体重 3.85千克
身高 14.3米
早晨喝 0.005千克牛奶。
四、课堂总结
1.这节课的学习内容是什么?
2.通过这节课的学习你有什么收获和体会?
3.还有什么疑问?
《小数的意义》教案 篇2一、复习
用分数表示下面的数。
1角=( )元 1分米=( )米 2角=( )元
1厘米=( )米 1分=( )元 1毫米=( )米
二、教学例1:
1、出示例1:用“角”或“分”作单位,说出下面物品的价钱。
指名回答问题。注意学生回答问题时要完整。
橡皮的单价0.3元是3角;信封的单价0.05元是5分,练习簿的单价0.48元是4角8分或48分。
2、教学小数的读法:
你能读出下面的小数吗?鼓励学生大胆尝试。
0.05 读作: 零点零五 0.48 读作: 零点四八
引导学生总结读整数部分为0的小数的方法:
从左往右依次读出各位上的数。
3、初步感受两位小数的含义。
想一想:0.3元是1元的几分之几?0.05元是1元的几分之几?0.48元呢?
小组讨论交流。
汇报:0.3元是1元的十分之三。
思路: 1元=100分,1元平均分成100份,1份是1分,1分就是1元的1/100 ;0.05元是5分,是5个1/100 ,也就是1元的 5/100。
根据上面的思路,让学生说明0.48元是1元的48/100 。
引导学生看到0.05和0.48都是两位小数,都表示百分之几。
4、“试一试”
A、理解:1厘米是 1/100米, 1/100米可以写成0.01米。
B、用米为单位的分数和小数分别表示4厘米与9厘米。
学生回答并说名理由。
比较:这三个分数都是什么样的分数?(百分之几的分数)
这三个小数呢?(两位小数 ……此处隐藏3868个字……米)改写成米数,三个层次共同说明,把低级单位的数改写成高级单位的数可以用分母是10.100.1000??的分数表示,再进一步用小数表示。教材着重从“小数是十进分数的另一种表现形式”的角度说明小数的含义,最后教材说明小数的计数单位及相邻两个计数单位之间的进率由学生自己填出。
3、学情分析:小数的意义属于概念教学,比较抽象,在操作中要重过程。根据本课教学内容的特点和学生对概念认知的思维特点,我们在制定本课教学环节时注意联系生活,尽量联系学生身边的事物,充分利用有效资源让学生经历数学知识的探究与发现的过程,使他们在动手、动脑、动口中理解知识、掌握方法,学会思考、获得积极的情感体验。
4、教学目标:
(1)使学生在初步认识小数的基础上知道小数的产生,理解小数的意义。
(2)使学生理解和掌握小数的计数单位及相邻两个单位间的进率。
(3)培养学生的观察、分析、推理能力。
5、教学重点、难点。
教学重点:使学生明确小数的产生和意义、小数与分数的联系、小数的计数单位和相邻两个计数单位间的进率。
教学难点:
小数意义的探究过程和相邻两个计数单位间的进率。
教学准备:
多媒体课件 、测量工具(米尺)。
教学过程:
(一)操作导入:
1、让两名学生测量黑板、课桌长度。(用米作单位)
2、交流测量结果,展开讨论。
3、引导小结:
在进行测量和计算时,往往不能正好得到整数的结果,这时常用小数来表示。(板书课题:小数的产生和意义)
【设计意图】通过让学生自己动手测量黑板、课桌长度的活动,当让学生用米作单位说出黑板的长时,学生心理产生了矛盾,因为测量黑板时多出的部分不够1米,课桌也不够1米,无法得到整数的结果,需要用其它数来表示,由此引出“小数”。学生通过测量亲自体验了小数产生的必要性。
(二)引导探究:
1、认识一位小数。(出示米尺)
(1)在米尺上找出1分米的地方。
①用米作单位,怎样用分数来表示? 为什么?(结合分数的意义说明)②用小数表示是:0.1米。
③谁来说说0.1米表示什么?(把1米平均分成10份,每份1分米,是 米,也可以写成0.1米。)
板书:1分米= 米=0.1米.
(2)讨论:
①用米作单位,3分米怎样用分数和小数表示?7分米呢?
②分别说说0.3米、7分米表示什么意思?
2、认识两位小数。(出示米尺)
(1)在米尺上找出1厘米的地方。
①用米作单位,怎样用分数来表示? 为什么?
②用小数表示是:0.01米。
③谁来说说0.01米表示什么?(把1米平均分成100份,每份是1厘米,是 米,也可 以写成0.01米。)
板书:1厘米= 米=0.01米.
(2)讨论:
①用米作单位,3厘米怎样用分数和小数表示?6厘米呢?
②分别说说0.03米、0.06米各表示什么意思?
3、认识三位小数。(出示学生尺)
(1)在尺上找出1毫米的地方。
①用米作单位,怎样用分数来表示? 为什么?
②用小数表示是:0.001米。
③谁来说说0.001米表示什么?
板书:1毫米= 米= 0.001米。
(2)讨论:
①用米作单位,3毫米怎样用分数和小数表示?6毫米和13毫米呢?
②说说0.003米和0.006米各表示什么意思?
照这样分下去,还可以得到万分之一米??也可以写成0.0001米。
象刚才小圆点后面一位的小数叫一位小数,两位的小数叫两位小数??
(三)概括:
1、概括小数与分数的关系。
(1)什么样的分数可以用一位、两位、三位??小数来表示?
(2)一位、两位、三位??小数分别表示几分之几?举例说说。
2、概括小数的意义。
师:分母是10、100、1000??的分数可以用小数表示。
【设计意图】小数的意义是十分抽象的概念,学生比较难理解。要改变死记硬背、机械 训练的方式,防止重结论,轻过程的做法。因此,我引导学生进行观察,使学生始终参与 到概念的探究过程中,通过比较、归纳、分析和综合,理解小数、分数之间的关系,最后 抽象出小数的意义。从具体事例推进到语言描述,这个过程需要迁移类推,更需要抽象概括,这样能加深对概念的理解,培养学生的逻辑思维能力。
(四)小数的计数单位和进率
(1)小数的计数单位是什么?(展开讨论)板书:(十分之一、百分之一、千分之一??,分别写作0.1、0.01、0.001??)
(2)1米里有几个0.1米?0.1米里有几个0.01米???每相邻两个单位间的进率是多少?
(3)师:因为整数和分数相邻两个单位间进率都是10,所以这些分数也可以仿照整数的写法,写在个位的右面,用一个小圆点(小数点)隔开,用来表示十分之几、百分之几、千分之几??的数,叫做小数。
【设计意图】老师没有直接告诉学生小数的计数单位是什么,每相邻两个计数单位间的进 率是10,而是让学生从解决问题中发现、归纳出来。这样能促使学生进行多角度、多方面、多层次的探索,符合学生的认知规律,培养学生应用所学知识解决问题的能力,获得学习 成功的体验,增进学好数学的信心。通过讨论交流和概括总结,培养数学思维能力和合作 精神。
(五)巩固应用
1、学生看书并完成例1的空白。
2、P51 “做一做”用分数、小数表示涂色部分。
3、闯关练习:
(1)括号里能填几?你是怎么知道的?
0.3里面有()个 ,0.09里面有()个 ;0.08里面有()个 。
(2)下面的括号里能填几?
0.1米里面有()个0.01米 ;
0.01米里面有()个0.001米 ;
0.001米里面有()个0.0001米。
(3)找朋友:(用线把上下两组数连起来)
0.045 0.13 0.0001 0.9
4、说说这些小数的计数单位分别是什么? 它里面含有多少个计数单位?
0.3 0.18 0.250.036
【设计意图】使学生明确小数和分数的关系,加深对小数意义的理解和对计数单位的认识,让所学知识得以巩固。
(六)课堂总结
这节课我们学习了什么?你知道了什么?你还有什么问题?
【设计意图】对知识点进行梳理,培养学生概括能力和语言表达能力。
(七)板书设计:
小数的产生和意义
小数的产生:在进行计算和测量时,往往得不到整数的结果。
文档为doc格式